4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
www.researchgate.net/publication/287528851_Osmoadaptation_and...
来自 : www.researchgate.net/publicati 发布时间:2021-03-26
98 WANDA MAŁEK, SYLWIA WDOWIAKWRÓBEL, MAŁGORZATA TARGOŃSKA, MICHAŁ KALITA, SEBASTIAN GNATPiśmiennictwo 1. Altendorf K., Siebers A., Epstein W.: e KDP ATPase of Esche-richia coli. Ann. N.Y. Acad. Sci. 671, 228–243 (1992) 2. Bakker E.P.: Low-affinity K+ uptake systems (w) Alkali Cation Transport Systems in Prokaryotes, red. E.P. Bakker, CRC Press, Inc., Boca Raton, FL, 1993, s. 253 3. Ballal A, Basu B., Apte S.K.: e KDP-ATPase system and its regulation. J. Biosci. 32, 559–568 (2007) 4. Blount P., Moe P.C.: Bacterial mechanosensitive channels: inte-grating psychology, structure and function. Trends Microbiol. 10, 420–424 (1999) 5. Booth I.R.: Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359–378 (1985) 6. Brey R.N., Ronsen B.P., Sorensen E.N.: Cation/proton antiport systems in Escherichia coli: absence of potassium/proton anti-porter. J. Biol. Chem. 255, 39–44 (1980) 7. Corratagé-Faillie C., Jabnoune M., Zimmermann S., Véry A.-A., Fizames C., Sentenac H.: Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell. Mol. Life Sci. 67, 2511–2532 (2010) 8. Csonka L.N.: Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121–147 (1989) 9. Dosch D.C., Helmer G.L., Sutton S.H., Salvacion F.F., EpsteinW.: Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium. J. Bacteriol. 173, 687–696 (1991)10. Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A.L., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R.: e structure of the potassium channel: molecular basis of K+ conduction and selec-tivity. Science, 280, 69–77 (1998)11. Epstein W.: Osmoregulation by potassium transport in Esche-richia coli. FEMS, 39, 73–78 (1986)12. Epstein W.: e roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 75, 293–320 (2003)13. Ferguson G.P.: Protective mechansims against toxic electrophi-les in Escherichia coli. Trends Microbiol. 7, 242–247 (1999)14. Harms C., Domoto Y., Celik C., Rahe E., Stumpe S., SchmidtR., Nakamura T., Bakker E.P.: Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12. Microbiology, 147, 2991–3003 (2001)15. Haltmann G., Bakker E.P., Uozumi N., Bremer E.: KtrAB and KtrCD: two K+-uptake systems in Bacillus subtilis and their role in adaptation to hipertonicity. J. Bacteriol. 185, 1289–1298 (2003)16. Jiang Y., Lee A., Chen J., Cadene M. Chait B.T., MacKinnon R.: Cristal structure and mechanism of a calcium-gated potassium channel. Nature, 417, 515–522 (2002)17. Johnson H.A., Hampton E., Lesley S.A.: e ermotoga mari-tima Trk potassium transporter- from frameshi to function. J. Bacteriol. 191, 2276–2284 (2009)18. Kem D.C., Trachewsky D.: Potassium metabolism (w) Potas-sium: its biologic significance, red. R. Wang, CRC Press, Inc., Boca Raton, FL, 1983, s. 2319. Koprowski P., Grajkowski W., Kubalski A.: Bakteryjne kanały jonowe jako struktury modelowe. Kosmos, 54, 373–37 (2005)20. Lanyi J.K., Salt-dependent properties of proteins from extre-mely halophilic bacteria. Bacteriol. Rev. 38, 272–290 (1974)21. LeMasurier M., Heginbotham L., Miller C.: KcsA: it’s a potas-sium channel. J. Gen. Physiol. 118, 303–313 (2001)22. Luttman D., Heermann R., Zimmer B., Hillmann A., RamppI.S., Jung K., Gorke B.: Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIANtr in Escherichia coli. Mol. Microbiol. 72, 978–994 (2009)23. Meury J., Kohiyama M.: ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch. Microbiol. 151, 530–536 (1989)24. Meury J., Robin A., Monnier-Champeix P.: Turgor-controled K+ uxes and their pathways in Escherichia coli. Eur. J. Biochem. 151, 613–619 (1985)25. Nakamura T., Yuda R., Unemoto T., Bakker E.P.: KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus. J. Bacteriol. 180, 3491–3494 (1998)26. Ochrombel I., Ott L., Krämer R., Burkovski A., Marin K.: Impact of improved potassium accumulation on pH homeostasis, mem-brane potential adjustment and survival of Coryne bac terium glutamicum. Biochim. Biophys. Acta, 1807, 444–450 (2011)27. Ørskov S.L.: Experiments in active and passive permeability of Bacillus coli communis. Acta Path. Microbiol. Scand. 25, 277–283 (1948)28. Parra-Lopez C., Lin R., Aspedon A., Groisman E.A.: A Salmo-nella protein that is required for resistance to antimicrobial pep-tides and transport of potassium. EMBO J. 13, 3964–3972 (1994)29. Plack R.H., Rosen B.P.: Cation/proton antiport systems in Escherichia coli: absence of potassium/proton antiporter activity in a pH-sensitive mutant. J. Biol. Chem. 225, 3824–825 (1980) 30. Polarek J.W., Williams G., Epstein W.: e products of the kdpDE operon are required for expression of the KDP ATPase of Escherichia coli. J. Bacteriol. 174, 2145–2151 (1992)31. Prell J., Mulley G., Haufe F., White J.P., Williams A., Karuna-karan R., Downie J.A., Poole P.S.: e PTSNtr system globally regulates ATP-dependent transporters in Rhizobium legumi-nosarum. Mol. Microbiol. 84, 117–129 (2012)32. Prince W.S., Villarejo M.R.: Osmotic control of proU transcrip-tion is mediated through direct action of potassium glutamate on the transcription complex. J. Biol. Chem. 265, 17673–17679 (1990)33. Rhoads D.B., Epstein W.: Energy coupling to net K+-transport in Escherichia coli K-12. J. Biol. Chem. 252, 1394–1401(1977) 34. Schleyer M., Bakker E.: Nucleotide sequence and 3’-end dele-tion studies indicate that K+ uptake protein Kup from Esche-richia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J. Bacteriol. 175, 6925–6931 (1993)35. Schlösser A., Meldorf W., Stumpe S., Bakker E.P., Epstein W.: TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 177, 1908–1910 (1995)36. Shabala L., Bowman J., Brown J., Ross T., McMeekin T., ShabalaS.: Ion transport and osmotic adjustment in Escheri-chia coli in response to ionic and non-ionic osmotica. Environ. Microbiol. 11, 137–148 (2009)37. Sleator R.D., Hill C.: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26, 49–71 (2001)38. Sukharev S.I., Martinac B., Arshavsky V.Y., Kung Ch.: Two types of mechanosensitive channels in the Escherichia coli cell enve-lope: solubilization and functional reconstitution. Biophys.J. 65, 177–183 (1993)39. olema N., Bakker E.P., Suzuki A., Nakamura T.: Change to alanine of one out of four selectivity filter glycines in KtrB cau-ses a two order of magnitude decrease in the affinities for both K+ and Na+ of the Na +dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEMS Lett. 450, 2170220 (1999)40. Trchounian A., Kobaya shi H.: Kup is the major K+ uptake sys-tem in Escherichia coli upon hyperosmotic stress at low pH. FEMS Lett. 447, 144–148 (1999)41. Zakharyan E., Trchounian A.: K+ inux by Kup in Escherichia coli is accompanied by a decrease in H+ eux. FEMS Microbiol. Lett. 204, 61–64 (2001)

本文链接: http://bestchemsty.immuno-online.com/view-781356.html

发布于 : 2021-03-26 阅读(0)
公司介绍
品牌分类
制药的
联络我们
服务热线:4000-520-616
(限工作日9:00-18:00)
QQ :1570468124
手机:18915418616
官网:http://